On Simplicial Toric Varieties of Codimension 2

نویسنده

  • E. Orabona
چکیده

We describe classes of toric varieties of codimension 2 which are either minimally defined by codim V +1 binomial equations over any algebraically closed field, or set-theoretic complete intersections in exactly one positive characteristic .

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : 0 70 5 . 43 89 v 2 [ m at h . A C ] 2 8 Ju n 20 07 On simplicial toric varieties of codimension 2

We describe classes of toric varieties of codimension 2 which are either minimally defined by 3 binomial equations over any algebraically closed field, or are set-theoretic complete intersections in exactly one positive characteristic.

متن کامل

On a special class of simplicial toric varieties

We show that for all n ≥ 3 and all primes p there are infinitely many simplicial toric varieties of codimension n in the 2n-dimensional affine space whose minimum number of defining equations is equal to n in characteristic p, and lies between 2n − 2 and 2n in all other characteristics. In particular, these are new examples of varieties which are settheoretic complete intersections only in one ...

متن کامل

Cohen-Macaulay-ness in codimension for simplicial complexes and expansion functor

In this paper we show that expansion of a Buchsbaum simplicial complex is $CM_t$, for an optimal integer $tgeq 1$. Also, by imposing extra assumptions on a $CM_t$ simplicial complex, we provethat it can be obtained from a Buchsbaum complex.

متن کامل

Deformations of Codimension 2 Toric Varieties

We prove Sturmfels’ conjecture that toric varieties of codimension two have no other flat deformations than those obtained by Gröbner basis theory.

متن کامل

Lagrangian torus fibration and mirror symmetry of Calabi-Yau hypersurface in toric variety

2 Background in toric geometry 8 2.1 Basic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2 Toric varieties associated with a reflexive polyhedron . . . . . . . 10 2.3 Subtoric varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.4 Singularities of a simplicial toric variety . . . . . . . . . . . . . . 12 2.5 Toric action of a torus on a toric variety . ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007